#### Method to Simulate Design Earthquake Motions

Tadanobu Sato Professor at South East University Professor at Kobegakuin University Emeritus Professor of Kyoto University

# Earthquake motions for structure design

- Using observed motion
- Stochastic model of amplitude and phase spectra
- Based on the dynamics of elastic body
- Empirical simulation model
- Design response spectrum compatible EM
- EM phase using nonlinear structural design

Introduction of Fourier analysis and stochastic modeling of earthquake motions

Modeling of amplitude and phase

#### Introduction of Fourier analysis

• Using inverse Fourier transformation

 $y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) d\omega \frac{1}{2\pi} \int_{-\infty}^{\infty} A(\omega) \exp(i\phi(\omega)) e^{i\omega t} d\omega$   $Y(\omega): Fourier \ transform \ of \ y(t)$   $A(\omega): amplitude \ spectrum$  $\phi(\omega): \ phase \ spectrum$ 

Fourier Inverse Transform  

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(\omega) \exp(i\phi(\omega)) e^{i\omega t} d\omega$$

$$= \int_{-\infty}^{\infty} A(\omega) \cos(\omega t + \phi(\omega)) df + i \int_{-\infty}^{\infty} A(\omega) \sin(\omega t + \phi(\omega)) df$$
Taking into account the facts that the amplitude spectrum is symmetric and the phase spectrum is asymmetric with respect to , we can get
$$y(t) = \int_{-\infty}^{\infty} A(\omega) \cos(\omega t + \phi(\omega)) df$$

#### Discretization

Substituting these formula into the inverse transformation formula we can obtain

$$y(t) = A(0) + \sum_{l=1}^{N/2} 2A(\omega_l) \cos(\omega_l t + \phi(\omega_l))$$

Any time histories can be approximated by a finite sum of cosine time functions

# Discretization It is necessary for numerical analyses to use finite sampling function given by $G(\omega) = \delta(\omega) + \sum_{l=1}^{N/2} \{\delta(\omega - \omega_l) + \delta(\omega + \omega_l)\}$ And considering the following formula $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(\omega) e^{i(\omega t + \phi(\omega))} \{\delta(\omega - \omega_l) + \delta(\omega + \omega_l)\} 2\pi df$ $= 2A(\omega_l) \cos(\omega_l t + \phi(\omega_l))$

Amplitude and phase spectra of earthquake motion

$$y(t) = A_1 \cos(2\pi f_1(t+t_1)) + A_2 \cos(2\pi f_2(t+t_2)) + \dots + A_n \cos(2\pi f_n(t+t_n)) + \dots$$

 $f_n$ : nth frequency  $A_n$ : nth amplitude  $\rightarrow$  amplitude spectrum  $t_n$ : nth time lag  $2\pi f_n t_n$ : nth phase  $\rightarrow$  phase spectrum:  $\phi_n$ 



#### Complicated example

- Amplitude is defined by normal distribution with mean=0 and standard deviation=5gal
- In the phase 2\[\pi\_n t\_n \], f\_n t\_n is assumed to be expressed by uniform random number between 0 to 1
- Number of summation terms is change from 10 to 1000
- Time interval is 0.01 sec and duration is 10 sec

Sample 3













#### Simulation of earthquake motion for a large event

- Calculate Green function based of wave propagation equation in elastic medium
- Sum up Green function taking into account similarity rule between the samll event and a large event
- Difficult to obtain Green function taking into account complex path and local site effect







#### Introduction of seismic design

- · Concept of response spectra
- How to use response spectra for earthquake proof design of structures
- Concept of yield strength demand spectrum
- How to use the yield strength demand spectrum for earthquake proof design of structures





































 $A(\omega)e^{i\phi(\omega)}$ 

$$= A^{(S)}(\omega) \cdot A^{(P)}(\omega) \cdot A^{(L)}(\omega) \cdot \exp\{i(\phi^{(S)}(\omega) + \phi^{(P)}(\omega) + \phi^{(L)}(\omega))\}$$

$$t_{gr}(\omega) = \frac{d\phi}{d\omega}$$

$$t_{gr}^{(j)}(\omega) = t_{gr}^{(j)(S)}(\omega) + t_{gr}^{(j)(P)}(\omega) + t_{gr}^{(j)(L)}(\omega)$$

$$\mu_{tgr}^{(j)} = \mu_{tgr}^{(j)(S)} + \mu_{tgr}^{(j)(P)} + \mu_{tgr}^{(j)(L)}$$

$$(\sigma_{tgr}^{(j)})^{2} = (\sigma_{tgr}^{(j)(S)})^{2} + (\sigma_{tgr}^{(j)(P)})^{2} + (\sigma_{tgr}^{(j)(L)})^{2}$$

| Table 1 Number of d | ata used for analysis |
|---------------------|-----------------------|
| Coefficients        | Number of data        |
| α                   | 588                   |
| β                   | 786                   |
| $\gamma, \kappa$    | 1618                  |

| Regression equation of GDT                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_{tgr}^{(j)}(\omega) = \alpha_1^{(j)} \cdot 10^{0.5M} + \beta_1^{(j)} \cdot R + \gamma_1^{(j)} \cdot H + \kappa_1^{(j)}$ $(\sigma_{tgr}^{(j)})^2 = \alpha_2^{(j)} \cdot 10^M + \beta_2^{(j)} \cdot R^2 + \gamma_2^{(j)} \cdot H^2 + \kappa_2^{(j)}$ |
| M: Earthquake magnitude<br>R: Hypocenter distance<br>H: Depth of surface ground                                                                                                                                                                         |

| j  | $\mu_{tgr}^{(j)}$ |           |            | $(\sigma_{gr}^{(j)})^2$ |           |            |           |            |
|----|-------------------|-----------|------------|-------------------------|-----------|------------|-----------|------------|
|    | $\alpha_1$        | $\beta_1$ | $\gamma_1$ | $\kappa_1$              | α2        | $\beta_2$  | Y2        | $\kappa_2$ |
| 8  | 1.359E-03         | 0.362     | 4.026E-03  | 0.250                   | 1.206E-05 | 4.163E-03  | 6.408E-06 | 142.599    |
| 9  | 1.453E-03         | 0.326     | 4.404E-03  | 2.930                   | 3.131E-06 | 3.433 E-03 | 7.440E-06 | 109.490    |
| 10 | 8.439E-04         | 0.298     | 3.345E-03  | 4.712                   | 1.268E-06 | 3.480 E-03 | 5.918E-06 | 51.728     |
| 11 | 8.247E-04         | 0.286     | 2.180E-03  | 3.810                   | 5.919E-07 | 3.112E-03  | 2.073E-06 | 23.115     |
| 12 | 6.080E-04         | 0.271     | 1.097E-03  | 3.442                   | 8.891E-09 | 1.767E-03  | 4.627E-07 | 12.476     |
| 13 | 8.880E-04         | 0.251     | 6.145E-04  | 3.656                   | 8.805E-08 | 6.257E-04  | 3.760E-07 | 11.656     |
| 14 | 1.143E-03         | 0250      | 3.723E-04  | 3.174                   | 8.068E-08 | 5.522E-04  | 3.724E-07 | 9.915      |
| 15 | 1.037E-03         | 0.246     | 1.553E-05  | 3.169                   | 7.015E-07 | 9.468E-04  | 3.673E-07 | 12.376     |

### Regression coefficients





### EM compatible with RS effect of magnitude



### EM compatible with RS effect of hypocenter distance





EM compatible with RS

































