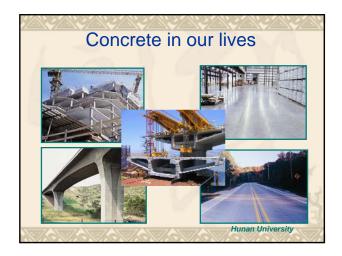
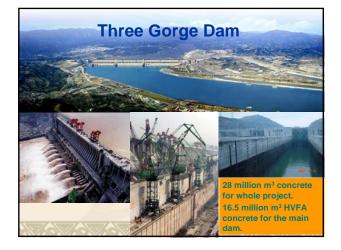
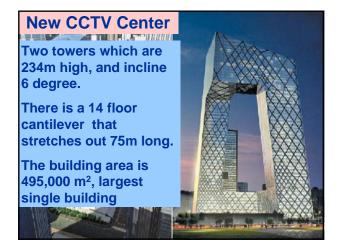
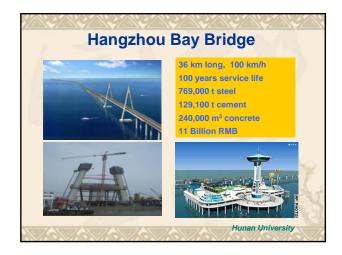

Main Achievements/主要学术成果

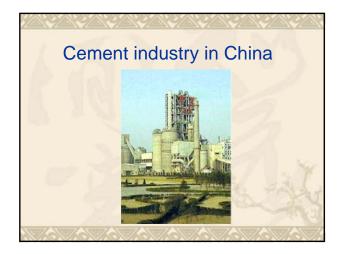
- * 发表论文140余篇,论文他引1400多次;
- 出版英文著作5本,合编国际会议论文集3本;
- 组织和主持国际学术会议3次和专题研讨会3次;
- 20余次应邀担任专家委员会委员或分会主席;
- 多次应邀做大会主题报告和大会报告;
- 应邀在国际上近40所大学和大公司做学术报告和专题讲座;
- 应邀当过国际上近30多个著名学术期刊的审稿人;

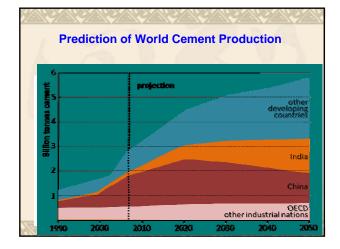


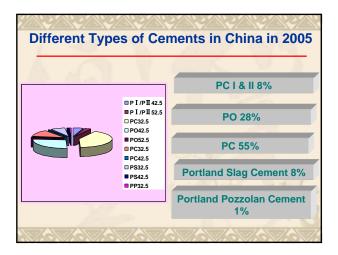


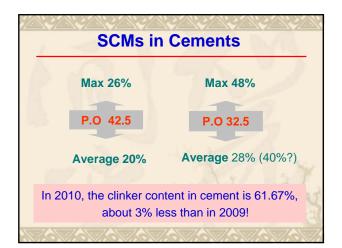



Production of cement and steel in China						
	Cement Production (MMT)	% of global Production	Steel Production (MMT)	% of global Production		
2008	1,380	About 50%	500 Mil.	About 38%		
2009	1,630	About 53%	678 Mil	About 50%		
Increased %	17.9%	- 43	13.5%			
Based on the production of cement and steel, the construction in China is more than 50% of the total global construction						

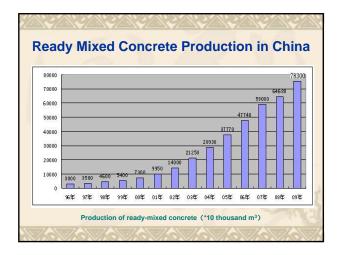




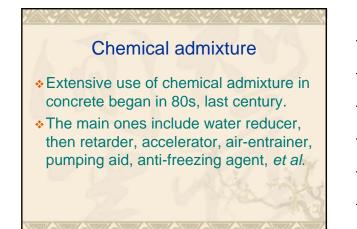



	Chines	se Star	ndard f	or Cem	ent	
Name	Symbol	Clinker+ gypsum ¹		SC	M	
			Slag ²	Pozzolan 2	Fly Ash ²	Other Material ⁴
PC	P. I. P. II	100% 100~95%	1	1	1	/ 0~5%
OPC	P. 0	94~80%		6~20%		0~5%
Portland Slag Cement	P. S (A) P. S (B) P. S (C)	79~65% 64~50% 49~30%	21~35% 36~50% 51~70%	1	1	0~5%
Portland Pozzolan Cement	P. P	79~60%	1	21~40%	1	0~5%
Portland Fly Ash Cement	P. F	79~60%	1	1	21~40%	0~5%
Portland Composite Cement	P. C	79~50%		21~50% ³		0~5%

Distribution of strength class of cement								
Ver		Country	S	strength class				
Yea	ır	Country	32.5	42.5	52.5	62.5		
200	7	China	55.3%	40.6%	3.9%	0.2%		
199	7	Germany	61.6%	32.4%	5.7%		ŕ	
199	7	France	48.2%	11.3%	32.6%		2	
	5							



hon	no in Comont Drod	uction Brocos
Jian	ge in Cement Prod	uction Proces
Year	Total Cement Production (MT)	Rotary Kiln Production
Year 2001	Total Cement Production (MT) 664,000,000	Rotary Kiln Production (%) 14
	1 1 10	(%)



CityOutput (million m3)Increase rate (%)Beijing39.68.0Shanghai60.59.4Chongqinag22.04.3TianJin26.733.5	Production of ready-mixed concrete in several large cities in 2009						
Shanghai60.59.4Chongqinag22.04.3	Ci	ty					
Chongqinag 22.0 4.3	Beij	ing	39.6	8.0			
	Shar	ighai	60.5	9.4			
TianJin 26.7 33.5	Chong	qinag	22.0	4.3			
	Tiar	Jin	26.7	33.5			
				- Auto			

The technical specifications for fly ash used in concrete						
Index		Gra	ade			
Index	Ι	II	III			
The residue of sieve(0.045mm) , % $~\leq~$	12	20	45			
Water demand ratio, % ≤	95	105	115			
Loss on ignition , % \leq	5	8	15			
Water content, % ≤	1	1	No requirement			
SO ₃ , % ≤	3	3	3			

Usage of fly ash in concrete industry

- Fly ash becomes an indispensable composite in ready-mixed concrete.
- ✤ Fly ash is normally 10-30% of binder.
- As high as 50% fly ash is used to produce massive concrete.

Usage of GGBS in concrete

- The used amount of GGBS increases gradually. Several GGBS millworks with million ton capability were built by steel enterprises.
- Ground steel slag went to market recently.
- A little of silica fume is used only for high strength concrete.

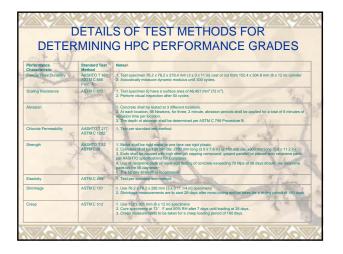
Aggregate Supply There is not enough supply of aggregate in large cities.

- Aggregate should be transported 100 km long from neighbor area.
- Sand is seriously absent. Manufactured sand is more and more used together with natural river sand.
- Utilization of recycled concrete as aggregate is being developed.

HIGH PERFORMANE CONCRETE

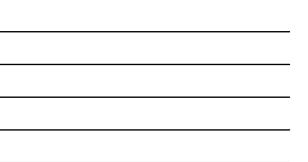
✤ Definition:

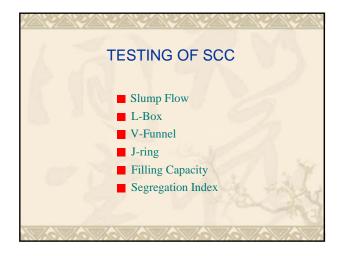
The American Concrete Institute (ACI) defines highperformance concrete as concrete in which certain characteristics are developed for a particular application and environment. The characteristics may be considered critical for an application, cannot always be achieved routinely when using conventional constituents and normal mixing, placing and curing practices.

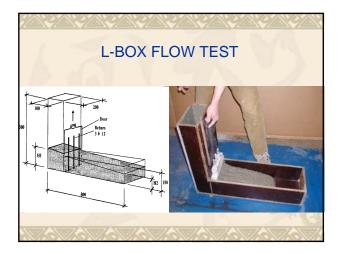


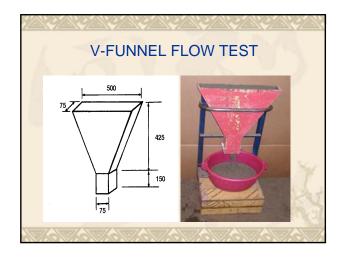
FHWA HIGH				ICRET	E	
LE I F E	Standard Test		FHWA HPC Perfor	rmance Grade ²	1	
Performance Characteristic	Standard Test Method	1	2	3	4	N/ A
Freeze/Thaw Durability4 (x = relative dynamic modulus of elasticity after 300 cycles)	AASHTO T 161 ASTM C 666Proc. A	60% ≤ x ≤ 80%	80% ≤ x	-	and the second	
Scaling Resistance ⁵ (x = visual rating of the surface after 50 cycles)	ASTM C 672	x = 4,5	x = 2,3	x = 0,1		
Abrasion Resistance ⁴ (x = avg. depth of wear in mm)	ASTM C 944	2.0 > x ≥ 1.0	1.0 > x ≥ 0.5	0.5 > x		
Chloride Permeability ² (x = coulombs)	AASHTO T 277 ASTM C 1202	3000 ≥ x > 2000	2000 ≥ x > 800	800 ≽ x	1	6
Strength (x = compressive strength)	AASHTO T 22 ASTM C39	$\begin{array}{l} 41 \leqslant x < 55 \text{ MPa} \\ (6 \leqslant x < 8 \text{ ksi}) \end{array}$	$\begin{array}{l} 55 \leqslant x < 69 \text{ MPa} \\ (8 \leqslant x < 10 \text{ ksi}) \end{array}$	69 ≤ x < 97 MPa (10 ≤ x < 14 (ksi)	x ≥ 97 MPa (x ≥ 14 ksi)	
Elasticity ²² (x = modulus of elasticity)	ASTM C 469	24 ≤ x < 40 GPa (4 ≤ x < 6 x 10 ⁶ psi)	40 ≤ x 50 GPa (6 ≤ x < 7.5 x 10 ⁶ psi)	x ≥ 50 GPA (x ≥ 7.5 x 10 ⁶ psi)	100	
Shrinkage ⁴ (x = microstrain)	ASTM C 157	800 > x ≥ 600	600 > x ≥ 400	400 > x	Enty a	1
Creep ² x = microstrain/pressure unit)	ASTM C 512	0	0	0	0	
	AK W					

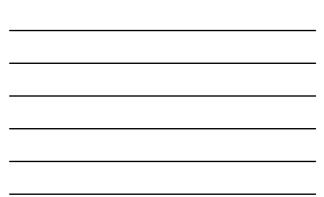
		_
		_
		_
		_
		_
		_

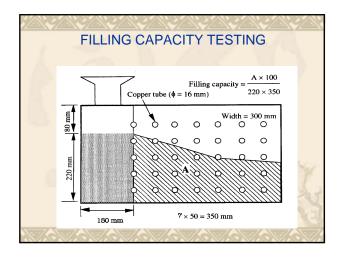


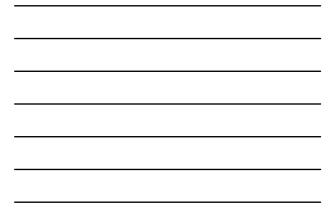


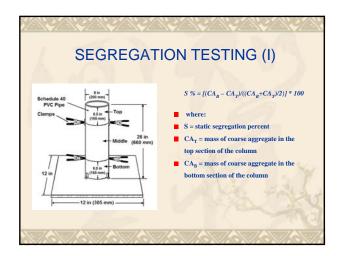




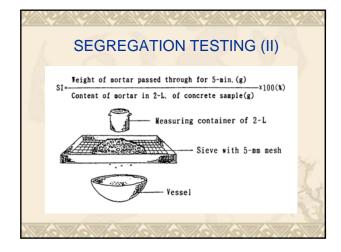




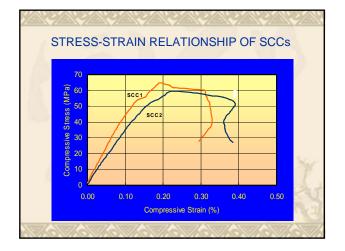


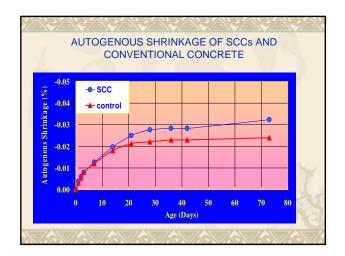


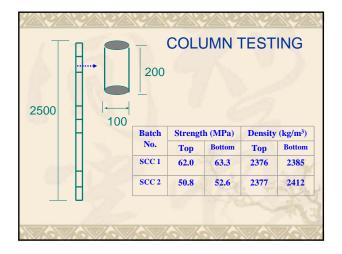
	Pas	ssing Ability	v Rating
	Difference between J-Ring Flow and Slump Flow (mm)	Passing Ability Rating	Remarks
	0 - 25	0	High Passing Ability
	25 - 50	1	Moderate Passing Ability
	> 50	2	Low Passing Ability
	- 24		The first
1			





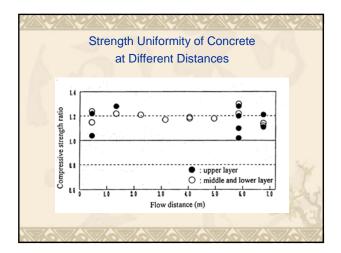


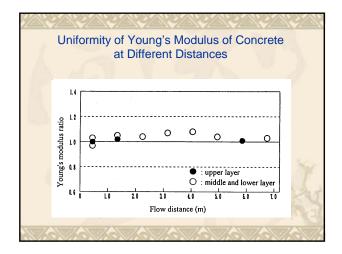


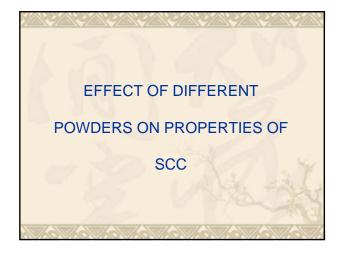


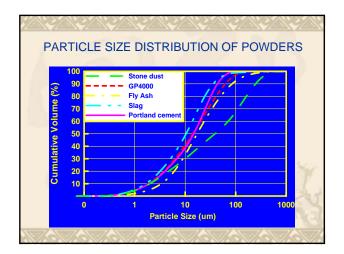
MODULUS OF ELASTICITY OF SCCs					
Concret	Modulus of El	asticity (GPa)			
e	From Stress-Strain Curve	ACI 318 Equation			
SCC 1	48.38	38.01			
SCC 2	35.78	36.48			
ACI 318 – relationship between modulus of elasticity E_c and compressive strength f_c : $E_c = 4.73 f_c^{0.5}$					

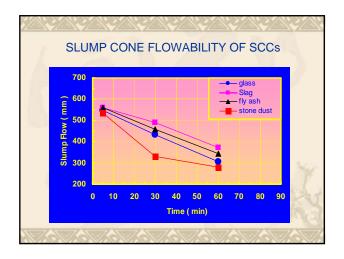


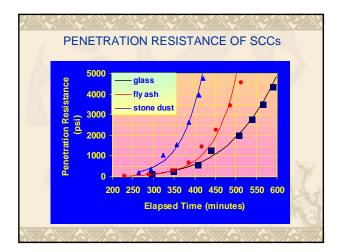




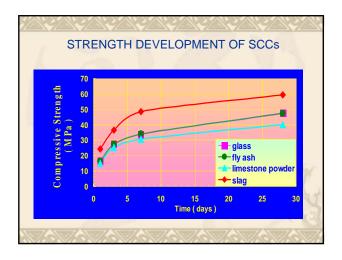


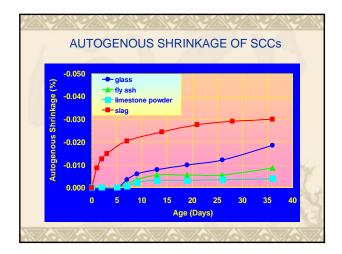




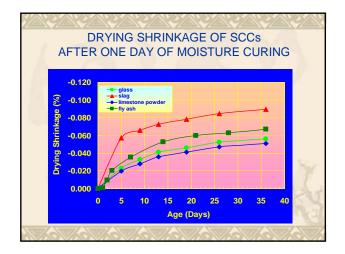


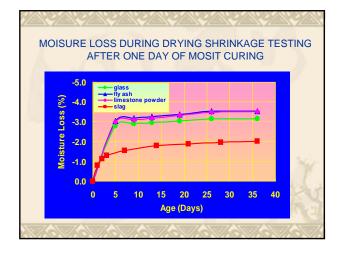
A.	PROPER	TIESC	OF FRESH	I SCCs	
Powder	Slump Flow (mm)	L-box H2/H1 (%)	L-box Flow (s)	Air Content (%)	Density (kg/m ³)
Glass	550	38	8.4	2.3	2311
Fly ash	560	69	3.1	2.2	2326
Slag	560	45	5.3	2.8	2350
Stone Dust	540	25	5.8	2.9	2304

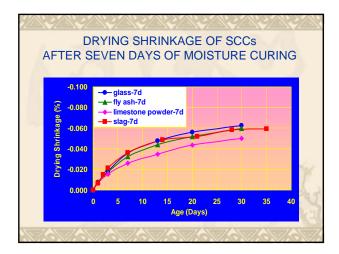


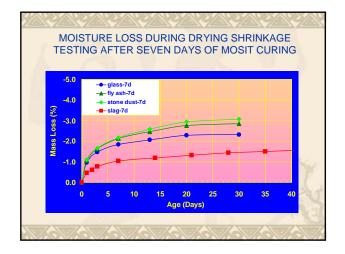


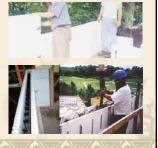
		F SCCs
Powder	Initial (h:m)	Final (h:m)
glass	6:25	9:35
fly ash	6:15	8:10
limestone powder	5:00	6:50









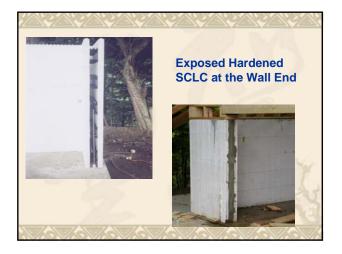


INSULATING CONCRETE FORM (ICF) SYSTEM

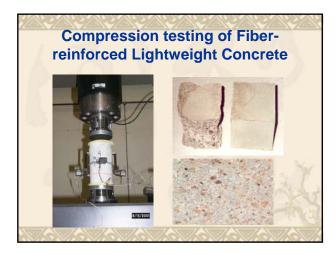
- Insulating concrete form (ICF) technology uses hollow expanded polystyrene blocks or panels held together by ties as forms and place concrete inside of these forms.
- When the concrete hardens, the expanded polystyrene forms remain in place to serve as insulation and attachment points for interior and exterior finishes.

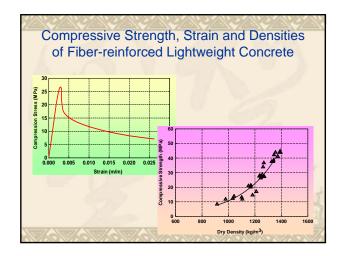
ADVANTAGES OF ICF SYSTEM

- Energy Saving 25% to 50% energy savings of ICF versus wood or steel-framed homes;
- Greater Comfort;
- Solid & Lasting Security;
- Peace & Quiet ICF walls allowed less than onethird as much sound to pass through;
- Less Repair & Maintenance;
- A Healthier Home & Environment.

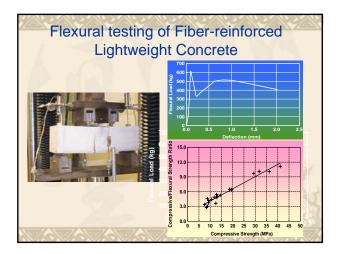

CURRENT CONCRETE AND CONSTRUCTION FOR ICFS

- Conventional concrete with slump < 10 cm (4")
- Place concrete every 4' high
- Honeycombs often occur, especially around plastic form ties and rebars inside the forms.


Advantages of Lightweight Concrete

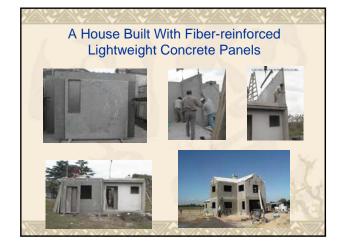

- Good performance and durability
- Less dead load (reduced member size, seismic inertial mass and foundation forces)
- Better insulation property
- Higher materials costs but lower total construction costs

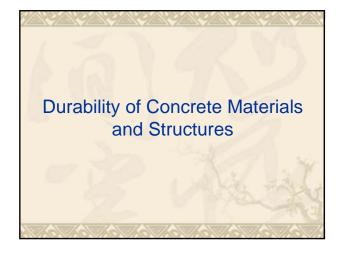
Raw Materials For Lightweight Concrete

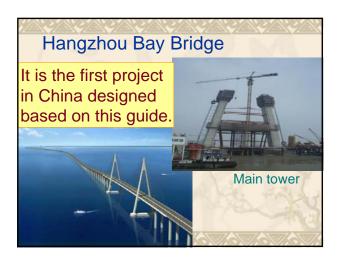

- ASTM Type III portland cement
- Ground blast furnace slag and ASTM Class F coal fly ash
- Expanded shales as aggregates
- Gas-forming agent, foaming agent
- Polycarboxylate superplasticizer
- Polyproplene and nylon fibers











《<u>Code for durability design of concrete structures</u>》 《<u>混凝土结构耐久性设计规范</u>》 GB/T50476-2008,

Became effective since May 1, 2009

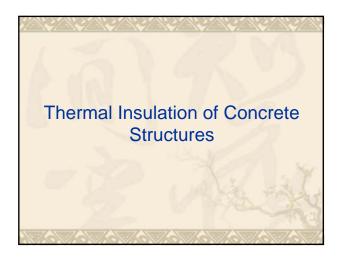
Hangzhou Bay Bridge

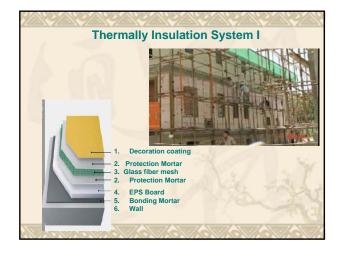
- A 36 km long bridge across Hangzhou Bay in Zhejiang Province, east coast of China.
- There is severe aggressive environment due to high Cl⁻ concentration in seawater and soil.
- The designed service life is **100 year**.
 Corrosion of reinforcement should not occur in this period.

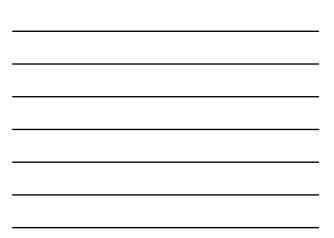
Durable marine concrete

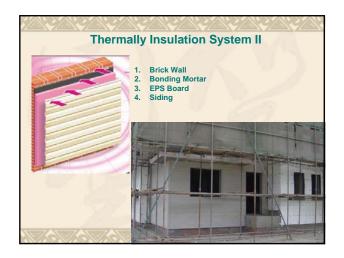
- The controlling factor of concrete durability is Cl⁻ ion diffusion efficiency.
- High volume mineral admixture concrete with low water-binder ratio was adopted to lower Cl⁻ ion diffusion coefficient of concrete.

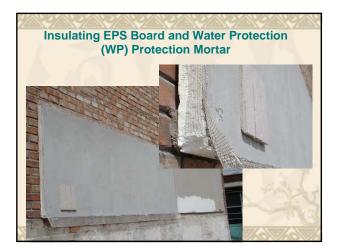
Properties of raw materials

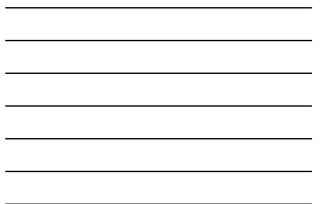

- Cement: PII-42.5, 3d strength 32.0MPa, 28d strength 52.8MPa.
- Fly ash: low-Ca type, LOI=3.5%, water demand=91%, SO₃=0.68%, 0.045mm sieve residue=9.1%
- ♦ GGBS: activity factor=116%, SSA=446 m²/kg
- * Aggregate: 5-25 mm, Non AAR activity
- * Sand: river sand, fineness module 2.6
- Superplasticizer: Naphthaline-type for ready-mixing concrete, polycarboxylate-type for precasting concrete


Concrete mix							
	Strength grade	W/b	Cement (kg/m ³)	Fly ash (kg/m ³)	GGBS (kg/m ³)		
Foundation inland	C25	0.36	165	124	124		
Foundation under water	C30	0.31	264	216			
Pier	C40	0.35	162	162	81		
Box girder	C50	0.32	212	47	212		

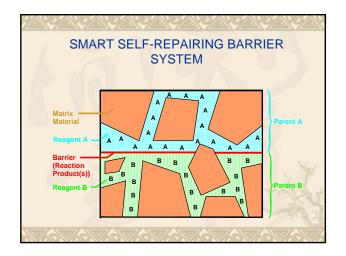



Requirement on Cl ⁻ ion penetrativity of concrete determined by RCM method					
Structure section	CI ⁻ ion diffusion coefficient of concrete / x10 ⁻¹² m ² /s				
Pouring pile	≤3.0				
Foundation	≤2.5				
Pier	≤2.5				
Box girder	≤1.5				
Tower	≤1.5				

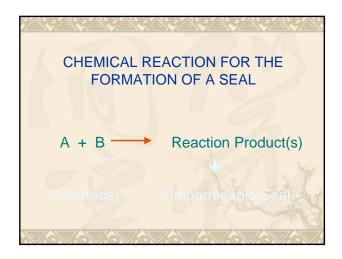


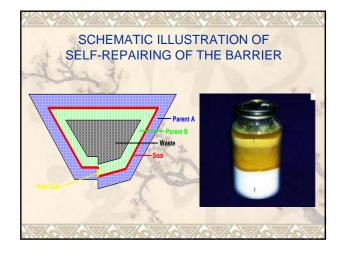


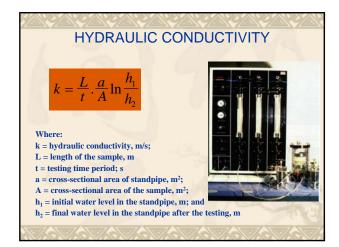
PER	ORMANCE	REQUIREMENT	CURING AND TESTING CONDITIONS
1 EIG	ORMANOE	REGORICEMENT	
Bonding	Standard curing	≥0.70	14 d of standard curing
strength with cement mortar (MPa)	Resistance to temperature change	≥ 0.50	After 7 d of standard curing, then in an oven at 70 \pm 2 $^\circ\!$
	Water resistance	≥ 0.50	After 14 d of standard curing, then in water at $20\pm2^{\circ}$ for 48 h
	Freezing-thawing resistance	≥ 0.50	After 14 d of standard curing, then 25 freezing-thawing cycle
Bonding strength with EPS board (MPa)	standard curing	≥0.10 or EPS destroyed	14 d of standard curing
	Water resistance	≥ 0.10 or EPS destroyed	After 14 d of standard curing then in water at $20\pm2^\circ C$ for 48 h
	Freezing-thawing resistance	≥ 0.10 or EPS destroyed	After 14 d of standard curing then 25 freezing-thawing cycles
Operational tin	ne (h)	≥ 2	
24 h water absorption, g/m ²		≤1000	After 28 d of standard curing then in water at $20\pm1^\circ$ for 24 h
Compressive/f	lexural strength ratio	≤3.0	28 d of standard curing
Cracking resis	tance	no cracking	28 d of standard curing
Water permea	bility (24 h) (ml)	≤3.0	28 d of standard curing then tested for 24 h



APPLICATIONS OF BARRIERS IN GEOENVIRONMENTAL ENGINEERING


- Landfill Liners and Covers
- Mining Waste Liners and Covers
- Hazardous Waste Containment Liners
- Vertical Walls
- Covers for Contaminated Sites


COMMON ENGINEERING BARRIERS


- Clayey Barriers
- Geomembranes
- Geosynthetic/Clay Composites
- Bentonite Based Barriers
- Hydraulic Cement Based Barriers (Portland Cement Pastes, Soil Cement, Lime-Pozzolan Blends, Lime-Slag Blends, Concrete, Polymer Concrete)
- Asphalt
- Chemical Barriers (silicates, lignosulfites, phenoplasts, aminoplasts, etc..)

