

Self-Introduction

Educations

- ◆ B.Eng. Department of Civil Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China, July 1986.
- ◆M.Eng. Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan, March 1991
- ◆D.Eng. Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan, March 1994

Self-Introduction

Appointments

1994 Research Associate, Nagoya University, Japan

1996 Assistant Professor, Nagoya University, Japan

1998 Associate Professor, Nagoya University, Japan

2008 Professor, Meijo University, Japan

Research Fields

Behavior of structural members and systems, with particular emphasis on:

- 1. Seismic and Damage Control Design,
- 2. Seismic Performance Evaluation and Retrofit, and
- 3. Ultimate Behavior of Steel and Steel-**Concrete Composite Structures.**

Ph. D. Students Supervised or Jointly Supervised

- rical Study on Seismic Performance Evaluation of Steel 1995 - September 1995 - September 1998 (jointly supervised), z, Y: A Seismic Design Methodology for Thin-Walled Steel Structures gh the Pushover Analysis, October 1997 - September 2000 (jointly
- Susantha, K.A.S.: Development of Capacity and Demand Prediction Methodology for Concrete-Filled Steel Structures, October 1998 September 2001.
- 2001. Praween Chusilp: Experimental and Numerical Study on Cyclic Shear Behavior of Steel Structures, October 1999 September 2002 (jointly supervised). Lu, Z.H.: Seismic Performance Evaluation and Retrofitting Methodology for
- Z.H.: Seismic Performance Evaluation and Retrotrung Action el Arch Bridges, October 2001 September 2004. en, Z.Y.: Performance-Based Seismic Design Approach for Steel Bridges h Structural Control Devices, October 2003 September 2006. en, X.: Seismic Demand of Structural Control Dampers Used in Seismic Unconding of Street Bridges, October 2007 September 2010.
- formance Upgrading of Steel Bridges, October 2007 September 2010. zuki, T.: Seismic Behavior of Steel Structures with Welding Defects, April
- 2009 present.

Doctoral Researchers Supervised or Jointly Supervised

- 1. Luo, X.Q.: Development of SMA Dampers and Applications to Steel Structures, April 2008 -March 2010.
- 2. Wang, C.L.: Development of High Performance BRB Dampers and Applications to Steel Structures, April 2010 - present (jointly supervised).
- 3. Kang, L.: Development of Seismic Performance **Evaluation Methods for Steel Structures with** Welding Defects, April 2011 - present.

Major Universities in Japan Top Seven National Universities (Former Imperial Univ.)

• Kyushu University

- Osaka University
- Kyoto University
- Nagoya University
 The University of Tokyo
 Tohoku University

- Hokkaido University Top Two Private Universities
- Waseda University
- Keio University

JST-NSFC International Collaborative Research Project (2010-2012)

Seismic Damage Control and **Performance-based Seismic Design** of Bridge Structures

TOPICS OF STRUCTURAL ENGINEERING

- •Introduction of steel bridges in the world
- Seismic design of steel structures
- Maintenance of steel structures
- •Seismic design of concrete structures
- Material development for sustainable concrete structures

STRUCTURAL ENGINEERING

Three elements of designing structures

Economical Safe, and Beautiful

NEW STRUCTURES SINCE 1950

- Welding as a reliable joining method
- Rivets replaced by HS bolts
- Welded plate girder bridges
- Composite beams, columns, frame systems
- Cable-stayed bridges
- Aluminum, CF steel, Stainless steel structures
- Prestressed concrete structures
- Prefabricated structures

INTELLECTUAL DEVELOPMENTS SECOND HALF of 20th CENTURY

- Probability-based design methods
- Matrix analysis of structures
- Structural dynamics
- Earthquake design methods
- Post-buckling strength of plates and shells
- FEM
- Fatigue
- Brittle fracture theory
- Computerized design

TOOLBOX AVAILABLE IN 2011

- Organizational and building skills and resources
- Material choices
- Analysis and design methods

The Computer: the universal facilitator

Organizational and building skills and resources

- Fabrication
- Transportation
- Erection
- Maintenance
- Demolition
- Project management
- Quality control

Material choices

- Very extensive menu: concrete, wood, steel, masonry, aluminum, stainless steel, FRP(fiber reinforced polymers)
- Creative challenge: combinations of materials!

Analysis and design methods

- Numerical methods of increasing sophistication, as needed for a given condition
- Programs for automatic analysis and design.

MOST IMPORTANT FACT

- Without the computer we cannot exist
- How to tame the "computer beast"?
- Learn fundamentals of structural theory
- Check by more than one method
- Quality control at all levels!!!!!!!

WE CAN DESIGN ANYTHING!

- Complicated structures can be analyzed and designed
- Creativity can make structures act like a bird (Milwaukee art museum, Wisconsin, USA)

WE CAN DESIGN ANYTHING!

- Complicated structures can be analyzed and designed
- Creativity can make structures act like a bird (Milwaukee art museum, Wisconsin, USA)

CHALLENGES FOR STRUCTURAL ENGINEERS

- Rehabilitation for new use
- Evaluate and repair damaged structures
- Deconstruction of large structures
- Design for catastrophes: earthquake, windstorm, ice storm, water surge, fire, blast, etc.
- Life-cycle design: build, renovate, demolish

CHALLENGES FOR STRUCTURAL ENGINEERS

- Design for rapid construction
- "Green" structures
- "Sustainability"
- Structures with control mechanisms: active, passive
- Monitoring behavior of structures
- Creative use of new materials
- Coastal structural engineering

CHALLENGES FOR STRUCTURAL ENGINEERS

- Performance-based design methods
- Special research-based advanced design projects
- Planning→Testing→Verigfication→ Parametric studies→Design criteria
- · Application to major project
- Probability-based design for special structures

<u>AISC DEFINITION OF</u> <u>PERFORMANCE-BASED DESIGN</u>

• "An engineering approach to structural design that is based on agreed-upon <u>performance goals</u> and <u>objectives</u>, engineering analysis and quantitative assessment of alternatives against those design goals and objectives using accepted engineering tools, methodologies and performance criteria."

<u>PERFORMANCE-BASED DESIGN IN</u> <u>EARTHQUAKE ENGINEERING</u>

EXAMPLE in USA:

"Recommended Seismic Design Criteria For New Steel Moment-Frame Buildings." (FEMA 350)

Note: FEMA = Federal Emergency Management Agency)

CHALLENGES FOR DESIGN STANDARDS

- How to deal with Performance-Based Design?
- How can building authorities validate designs without formulas (FEM)?
- How to develop codes for repair, rehabilitation, re-use, new types of structures, new materials?
- The answer: Continue to keep a healthy research infrastructure.

RESEARCH OPPORTUNITIES

- Laboratories are better than ever
- Field testing to monitor and to assess strength
- Testing from another site via communications network
- Provide each structural engineer to engage sometimes in research as part of professional experience

<u>PERFORMANCE-BASED DESIGN IN</u> <u>EARTHQUAKE ENGINEERING</u>

EXAMPLE in Japan: see

Features of the Guidelines

- Performance-based seismic and damage control limit state design
- Steel bridge piers and complex bridge structures are covered.
- · Inelastic dynamic analysis based design
- Dual-level methodologies; displacement-based and strain-based performance evaluation methods

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- 3. Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Statistical Data of Bridge Piers in Nagoya Expressway Public Corporation

	St	eel	RC		Total
	Box	Pipe	Rect.	Circ.	Total
No. of piers	267	113	615	80	1075
Construction years	1971~1994				
<u>,</u>					

Features of Steel Bridge Structures

- Thin-walled box (or pipe) sections
- Stiffened by longitudinal ribs and diaphragms
- Susceptible to local buckling

STEEL BRIDGE PIERS CONSTRUCTED IN THE NAGOYA URBAN HIGHWAY

Summary

Steel bridge piers are popular in Japan, because construction space is limited in urban area.

- Compared with RC columns,
- Cross-section of steel piers can be relatively small.
- Steel piers can be fabricated in shop.

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- 3. Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Damaged Steel Bridge Piers in Kobe Earthquake

Local Buckling

Local & Global Interactive Buckling

Summary of Failure Modes of Steel Bridges

- Failure modes of steel bridge structures under strong earthquakes can be
- 1. Failure due to local buckling (bending or shear) in thin-walled structures
- 2. Failure due to crack (extremely low cycle fatigue) in relatively thick-walled structures
- 3. Failure due to combined buckling and crack

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- **3.** Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Repair Methods for Steel Bridge Piers

Strength and ductility capacity can be improved, because local

As a result, **R** will be reduced and

┢┲

dded longitudinal stiffener

Retrofit Methods for Steel Bridge Piers

The buckling mode will be moved from a global mode to high modes or No local buckling occurs.

Inside View of Retrofitted Pier

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- 3. Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Summary

In the case of damage caused by either local buckling or ductile crack , they can be reproduced by cyclic and pseudo-dynamic tests and accurately simulated by advanced numerical analyses.

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- 3. Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Contents

- 1. Why steel thin-walled structures are popular in Japan?
- 2. Types of damage observed in Kobe Earthquake.
- 3. Repair and retrofit methods after Kobe Earthquake.
- 4. Seismic performance evaluation by experiment and numerical analysis.
- 5. Seismic retrofit techniques.
- 6. Recent progresses in seismic design of steel structures.

Dual-Level Methodology				
Method	Capacity	Demand	Performance check index	
(1) Static/ Dynamic Method	Static Pushover Analysis	Dynamic Analysis of ESDOF	Displacement	
(2) Dynamic Method	Failure Strain	EP. Time History Analysis	Strain	

Capacity Prediction through Pushover Analysis

Verification Format (Strain-based Method)					
Structural Safety (Safe or Unsafe)	ε_a) _{max} < ε_u				
Serviceability after Earthquake	ε_a) _{max} < 2.0 ε_y				
$arepsilon_{u}$: Ultim: $arepsilon_{a} \)_{max}$:Average	$arepsilon_u$: Ultimate Strain (Capacity) $arepsilon_a\)_{max}$: Average Response Strains within Failure Length				

Findings of Earthquake-Resistant Design

New Trend in Seismic Design Earthquake-Resistant Design Earthquake energy is absorbed by main members, through improving their ductility capacity *Measures:* use of thick-walled section, adding stiffeners (ribs), filling concrete inside hollow section Damage-Control Design Earthquake energy is absorbed by secondary members, through introducing (or replacing with) various damage control devices (energy dissipation members, dampers) *Function:* acting as fuse

Limit States and Required Performance in Steel Bridge Structures

- Ultimate Limit state: Required performance: Structural safety
- -Local and overall buckling -Low cycle fatigue
- Damage Limit state: Required performance: Serviceability after earthquake

-Structural damage due to inelastic deformation Performance verification method must check all of these limit states!

Method	Capacity <i>R</i>	Demand S	Remarks
(1) Displace-	Static	Dynamic	Applicable
ment-	Pushover	Analysis	structures ar
based	Analysis	of ESDOF	limited
(2) Strain-	Ultimate	Dynamic	Any Structure
based	Strain	Analysis	

Features of Steel Bridge Structures

- Thin-walled box (or pipe) sections
- Stiffened by longitudinal ribs and diaphragms
- Susceptible to local buckling
- P- Δ effect should be considered

Ultimate Compressive Strain Formula of Member Segment				
Stiffened box $\frac{\mathcal{E}_u}{\mathcal{E}_y} = f(R_f, \ \overline{\lambda}_s, \ N/N_y) \le 20.0$				
R _f = Flange width-thickness ratio parameter				
$\overline{\lambda}_{s}$ = Stiffener's slenderness ratio parameter				
$N/N_y = Axial$ force ratio				
•••Unstiffened box, Pipe, H section.				

Seismic Response Analysis

Analysis: 3D Easto-plastic Large Displacement Dynamic Analysis Damping : Mass Proportional with Damping Coeffi. =0.03 Element: Timoshenko Beam Element & Truss Element Analysis Code: ABAQUS ver. 5.8

Target Seismic Performances Most important Structure: Performance Level 2

	Mombon coundrose 2
	Weinder soundness 2
	Member soundness 2
	Member soundness 4

Summary and Conclusions

- A strain-based seismic safety verification method by using full E.-P. time history analysis is proposed.
- Safety verification:

Response strain \leq Ultimate strain

Displacement-based Method

Method	Capacity	Demand	Performance
	<i>R</i>	S	check
(1) Displace- ment method	Static Pushover Analysis	Dynamic Analysis of ESDOF	Displace- ment
(2) Strain	ultimate	Dynamic	Strain
method	Strain	Analysis	

Benchmark Dynamic Analysis

- Dynamic analysis of original structures using Modified Two-Surface Model (Nagoya University, 1995) for cyclic elastoplastic constitutive law of structural steel
- $P-\Delta$ effect is considered
- Bar element and no local buckling

